(1) The Harvard Mark I. A hundred years passed before a machine like t перевод - (1) The Harvard Mark I. A hundred years passed before a machine like t русский как сказать

(1) The Harvard Mark I. A hundred y

(1) The Harvard Mark I. A hundred years passed before a machine like the one Babbage conceived was actually built. This occurred in 1944, when Howard Aiken of Harvard University completed the Harvard Mark I Automatic Sequence Controlled Calculator.
(2) Aiken was not familiar with the Analytical Engine when he designed the Mark I. Later, after people had pointed out Babbage's work to him, he was amazed to learn how many of his ideas Bab¬bage had anticipated.
(3) The Mark I is the closest thing to the Analytical Engine that has ever been built or ever will be. It was controlled by a punched paper tape, which played the same role as Babbage's punched cards. Like the Analytical Engine, it was basically mechanical. How ~ ever, it was driven by electricity instead of steam. Electricity also served to transmit information from one part of the machine to another, replacing the complex mechanical linkages that Babbage had proposed. Using electricity (which had only been a laboratory curiosity in Babbage's time) made the difference between success and failure.
(4) ENIAC. What was needed was a machine whose computing, con¬trol, and memory elements were completely electrical. Then the speed of operation would be limited hot by the speed of mechanic-cal moving parts but by the much greater speed of moving elec¬trons.
(5) In the late 1930s, John V. Atanasoff of Iowa State College demon¬strated the elements of an electronic computer. Though his work did not become widely known, it did influence the thinking of
John W. Mauchly, one of the designers of ENIAC.
(6) ENIAC — Electronic Numerical Integrator and Computer - was the machine that rendered the electromechanical computers obso¬lete. ENIAC used vacuum tubes for computing and memory. For control, it used an electrical plug board, like a telephone switch¬board. The connections on the plug board specified the sequence operations ENIAC would carry out.
(7) ENIAC was 500 times as fast as the best electromechanical com¬puter.
(8) EDVAC. The Electronic Discrete Variable Computer — ED-VAC — was constructed at about the same time as ENIAC. But EDVAC, influenced by the ideas of the brilliant Hungarian-American mathematician John von Neumann, was by far the more advanced of the two machines.
(9) EDVAC used binary notation to represent numbers inside the machine. Binary notation is a system for writing numbers that uses only two digits (0 and 1), instead of the ten digits (0-9) used in the conventional decimal notation. Binary notation is now recognized as the simplest way of representing numbers in an elec¬tronic machine. EDVAC's program was stored in the machine's memory, just like the data.
(10) From the 1940s to the present, the technology used to build computers has gone through several revolutions. People sometimes speak of different generations of computers, with each generation using a different technology.
(11) The First Generation. First-generation computers prevailed in the 1940s and for much of the 1950s. They used vacuum tubes for calculation, control, and sometimes for memory as well.
(12) Vacuum tubes are bulky, unreliable, energy consuming, and generate large amounts of heat.
(13) The Second Generation. In the late 1950s, the transistor became available to replace the vacuum tube. A transistor, which is only slightly larger than a kernel of corn, generates little heat and enjoys long life. At about the same time, the magnetic-core memory was introduced. This consisted of a latticework of wires on which were strung tiny, doughnut-shaped beads called cores. Electric currents flowing in the wires stored information by magnetizing the cores. Information could be stored in core memory or retrieved from it in about a millionth of second.
(14) The Third Generation. The early 1960s saw the introduction of integrated circuits, which incorporated hundreds of transistors on a single chip. The most recent jump in computer technology came with the introduction of large-scale integrated circuits, often referred to simply as chips. It is the large-scale integrated circuits that make possible the microprocessors and microcomputers. They also make possible compact, inexpensive, high-speed, high-capacity integrated-circuit memory.
(15) The Fourth Generation. Computers today are hundred times smaller than those of the first generation, and a single chip is far more powerful than ENIAC.
(16) The Fifth Generation. The term was coined by the Japanese to describe the powerful, intelligent computers they wanted to build by the mid-1990s. Since then it has become an umbrella term, encompassing many research fields in the computer industry. Key areas of ongoing research are artificial intelligence (AI), expert systems, and natural language.
0/5000
Источник: -
Цель: -
Результаты (русский) 1: [копия]
Скопировано!
(1) Гарвардского Mark I. Сто лет прошло, прежде чем машина как один Бэббиджа задуман был фактически построен. Это произошло в 1944 году, когда Говард Айкен Гарвардского университета завершил Гарварда Марк I автоматическая последовательность контролируемых калькулятор.(2) Айкен не был знаком с аналитическим двигателем, когда он разработал Марк I. Позже после того, как люди отметил Бэббиджа работы к нему, он был поражен, чтобы узнать, как многие из его идей Bab¬bage ожидал.(3) Марк I это ближе всего к аналитический двигатель, который когда-либо был построен, или когда-либо будет. Оно находилось под контролем перфорированной бумажной лентой, которая играет такую же роль, как Бэббиджа перфокарты. Как аналитическая машина была основном механические. Как ~ когда-либо, это было вызвано электричество вместо пара. Электричество также служил для передачи информации из одной части машины к другой, замене сложных механических связей, которые были предложены Бэббиджа. Использование электричества (которое было только любопытство лаборатории в Бэббиджа время) сделал разницу между успехом и провалом.(4) ENIAC. Нужна была машина, элементы которой вычисления, con¬trol и памяти были полностью электрические. Затем скорость работы будет ограничиваться горячим скорость механик cal движущихся частей, но гораздо большей скоростью движения elec¬trons.(5) в конце 1930-х годов Джон в. Atanasoff Iowa государственный колледж demon¬strated элементы электронного компьютера. Хотя его работа не же стали широко известны, это повлияло на мышление John W. Mauchly, one of the designers of ENIAC.(6) ENIAC — Electronic Numerical Integrator and Computer - was the machine that rendered the electromechanical computers obso¬lete. ENIAC used vacuum tubes for computing and memory. For control, it used an electrical plug board, like a telephone switch¬board. The connections on the plug board specified the sequence operations ENIAC would carry out.(7) ENIAC was 500 times as fast as the best electromechanical com¬puter.(8) EDVAC. The Electronic Discrete Variable Computer — ED-VAC — was constructed at about the same time as ENIAC. But EDVAC, influenced by the ideas of the brilliant Hungarian-American mathematician John von Neumann, was by far the more advanced of the two machines.(9) EDVAC used binary notation to represent numbers inside the machine. Binary notation is a system for writing numbers that uses only two digits (0 and 1), instead of the ten digits (0-9) used in the conventional decimal notation. Binary notation is now recognized as the simplest way of representing numbers in an elec¬tronic machine. EDVAC's program was stored in the machine's memory, just like the data. (10) From the 1940s to the present, the technology used to build computers has gone through several revolutions. People sometimes speak of different generations of computers, with each generation using a different technology.(11) The First Generation. First-generation computers prevailed in the 1940s and for much of the 1950s. They used vacuum tubes for calculation, control, and sometimes for memory as well.(12) Vacuum tubes are bulky, unreliable, energy consuming, and generate large amounts of heat.(13) The Second Generation. In the late 1950s, the transistor became available to replace the vacuum tube. A transistor, which is only slightly larger than a kernel of corn, generates little heat and enjoys long life. At about the same time, the magnetic-core memory was introduced. This consisted of a latticework of wires on which were strung tiny, doughnut-shaped beads called cores. Electric currents flowing in the wires stored information by magnetizing the cores. Information could be stored in core memory or retrieved from it in about a millionth of second.(14) The Third Generation. The early 1960s saw the introduction of integrated circuits, which incorporated hundreds of transistors on a single chip. The most recent jump in computer technology came with the introduction of large-scale integrated circuits, often referred to simply as chips. It is the large-scale integrated circuits that make possible the microprocessors and microcomputers. They also make possible compact, inexpensive, high-speed, high-capacity integrated-circuit memory.(15) The Fourth Generation. Computers today are hundred times smaller than those of the first generation, and a single chip is far more powerful than ENIAC.(16) The Fifth Generation. The term was coined by the Japanese to describe the powerful, intelligent computers they wanted to build by the mid-1990s. Since then it has become an umbrella term, encompassing many research fields in the computer industry. Key areas of ongoing research are artificial intelligence (AI), expert systems, and natural language.
переводится, пожалуйста, подождите..
 
Другие языки
Поддержка инструмент перевода: Клингонский (pIqaD), Определить язык, азербайджанский, албанский, амхарский, английский, арабский, армянский, африкаанс, баскский, белорусский, бенгальский, бирманский, болгарский, боснийский, валлийский, венгерский, вьетнамский, гавайский, галисийский, греческий, грузинский, гуджарати, датский, зулу, иврит, игбо, идиш, индонезийский, ирландский, исландский, испанский, итальянский, йоруба, казахский, каннада, каталанский, киргизский, китайский, китайский традиционный, корейский, корсиканский, креольский (Гаити), курманджи, кхмерский, кхоса, лаосский, латинский, латышский, литовский, люксембургский, македонский, малагасийский, малайский, малаялам, мальтийский, маори, маратхи, монгольский, немецкий, непальский, нидерландский, норвежский, ория, панджаби, персидский, польский, португальский, пушту, руанда, румынский, русский, самоанский, себуанский, сербский, сесото, сингальский, синдхи, словацкий, словенский, сомалийский, суахили, суданский, таджикский, тайский, тамильский, татарский, телугу, турецкий, туркменский, узбекский, уйгурский, украинский, урду, филиппинский, финский, французский, фризский, хауса, хинди, хмонг, хорватский, чева, чешский, шведский, шона, шотландский (гэльский), эсперанто, эстонский, яванский, японский, Язык перевода.

Copyright ©2024 I Love Translation. All reserved.

E-mail: