This label

This label "Made in Space" for indu

This label "Made in Space" for industrial materials will probably surprise no one in the not so distant future. They may include super­conductors, new kinds of alloys, substances with peculiar magnetic properties, supertransparent laser glass', polymers, plastics, and so on. Numerous experiments carried out at the Russian orbital space sta­tions have paved the way to the development of methods and means of industrial production of new materials of better quality on board a spacecraft. Experts estimate that within a few coming years industrial production of various materials will be started in space.

Conditions on board a space vehicle o
orbiting the Earth greatly dif­fer from those on its surface. However all of these conditions can be simulated on earth, except for one - prolonged weightlessness. Weightlessness can be created on Earth, but only for a few seconds. A space flight is another matter: a satellite orbiting the Earth is in a dynamic zero-gravity state, i.e., when gravity is cancelled out by iner­tia.

What can weightlessness be used for? Many well-known process­es go on differently due to the absence of weight. The Archimedes principle is no longer valid and, consequently, stable-state liquid mix­tures can be obtained, the components of which would immediately separate on Earth because of different density. In case of melts' of metals, glasses or semiconductors, they can be cooled down to the solidification point even in space and then brought back to Earth. Such materials will possess quite unusual qualities.

In space there is no gravitational convection , i.e., movements of gases or liquids caused by difference of temperatures. It is well-known that various defects in semiconductors occur because of convection. Biochemists also have to deal with the worst aspects of convection, for example, in the production of superpure biologically active substances. Convection makes it very difficult on Earth.

Following the launch of the first orbital stations the specialists started experiments aimed at proving the advantages of the zero-gravity state for the production of certain materials. In this country all orbital stations from Salyut 5 onwards were used for that purpose, as well as rockets. Since 1976 over 600 technological experiments have been carried out on board manned and unmanned space vehicles.

The experiments proved that many of the properties of the materials obtained under the zero-gravity condition were much better than those produced on Earth. Besides, it has been established that it is necessary to develop a new science - physics of the weightless state - which forms the theoretical basis for space industry and space materials study. This science has basically been developed.The methods of mathematical modelling of the hydromechanical process under the zero-gravity condition have been created with the help of computers.

Special space vehicles will also be needed for industrial production of new-generation materials. Research has shown that the acceleration rate on board these vehicles must be reduced to the minimum. It was found that space platforms in independent flight carrying the equipment were most suitable for producing materials. These vehicles will have to use their own propulsion systems to approach their base orbital station after a certain period of time. The cosmonauts on board the station can replace the specimens. Many new and very interesting projects are planned for orbital stations. Here is one of them. Convection does not allow to grow large protein crystals on Earth. But it is possible to grow such crystals under the zero-gravity condition and to study their structure. The data obtained during the experiments can be useful for the work of laboratories on Earth in using the methods of gene engineering . Thus, it may be possible to make new materials in space and also to obtain valuable scientific data for new highly efficient technologies on Earth.

Preparatory work for industrial production in space at a larger scale is being carried out in Russia, the USA, Western Europe and Japan. It should be said that according to the estimates of American experts production of materials in space is to bring 60-billion dollars by the year 2000.
0/5000
Источник: -
Цель: -
Результаты (русский) 1: [копия]
Скопировано!
This label "Made in Space" for industrial materials will probably surprise no one in the not so distant future. They may include super­conductors, new kinds of alloys, substances with peculiar magnetic properties, supertransparent laser glass', polymers, plastics, and so on. Numerous experiments carried out at the Russian orbital space sta­tions have paved the way to the development of methods and means of industrial production of new materials of better quality on board a spacecraft. Experts estimate that within a few coming years industrial production of various materials will be started in space.Conditions on board a space vehicle oorbiting the Earth greatly dif­fer from those on its surface. However all of these conditions can be simulated on earth, except for one - prolonged weightlessness. Weightlessness can be created on Earth, but only for a few seconds. A space flight is another matter: a satellite orbiting the Earth is in a dynamic zero-gravity state, i.e., when gravity is cancelled out by iner­tia.What can weightlessness be used for? Many well-known process­es go on differently due to the absence of weight. The Archimedes principle is no longer valid and, consequently, stable-state liquid mix­tures can be obtained, the components of which would immediately separate on Earth because of different density. In case of melts' of metals, glasses or semiconductors, they can be cooled down to the solidification point even in space and then brought back to Earth. Such materials will possess quite unusual qualities.In space there is no gravitational convection , i.e., movements of gases or liquids caused by difference of temperatures. It is well-known that various defects in semiconductors occur because of convection. Biochemists also have to deal with the worst aspects of convection, for example, in the production of superpure biologically active substances. Convection makes it very difficult on Earth.Following the launch of the first orbital stations the specialists started experiments aimed at proving the advantages of the zero-gravity state for the production of certain materials. In this country all orbital stations from Salyut 5 onwards were used for that purpose, as well as rockets. Since 1976 over 600 technological experiments have been carried out on board manned and unmanned space vehicles.The experiments proved that many of the properties of the materials obtained under the zero-gravity condition were much better than those produced on Earth. Besides, it has been established that it is necessary to develop a new science - physics of the weightless state - which forms the theoretical basis for space industry and space materials study. This science has basically been developed.The methods of mathematical modelling of the hydromechanical process under the zero-gravity condition have been created with the help of computers.Special space vehicles will also be needed for industrial production of new-generation materials. Research has shown that the acceleration rate on board these vehicles must be reduced to the minimum. It was found that space platforms in independent flight carrying the equipment were most suitable for producing materials. These vehicles will have to use their own propulsion systems to approach their base orbital station after a certain period of time. The cosmonauts on board the station can replace the specimens. Many new and very interesting projects are planned for orbital stations. Here is one of them. Convection does not allow to grow large protein crystals on Earth. But it is possible to grow such crystals under the zero-gravity condition and to study their structure. The data obtained during the experiments can be useful for the work of laboratories on Earth in using the methods of gene engineering . Thus, it may be possible to make new materials in space and also to obtain valuable scientific data for new highly efficient technologies on Earth.Preparatory work for industrial production in space at a larger scale is being carried out in Russia, the USA, Western Europe and Japan. It should be said that according to the estimates of American experts production of materials in space is to bring 60-billion dollars by the year 2000.
переводится, пожалуйста, подождите..
Результаты (русский) 3:[копия]
Скопировано!
эту надпись "сделано в пространство" для промышленных материалов, возможно, будет сюрпризом, никто в не столь отдаленном будущем.они могут включать в себя супер - проводников, новых видов сплавов, вещества со специфическими магнитными свойствами, supertransparent лазер стекла ", полимеров, пластмассы, и так далее.многочисленные эксперименты, проводимые в российской орбитальной космической sta - организаций проложили путь для разработки методов и средств промышленного производства новых материалов, улучшения качества на борту космического корабля.по оценкам экспертов, в ближайшие несколько лет промышленное производство различных материалов будет запущен в космос.условия на борту космического корабля -на орбите земли в значительной степени диф - фер от тех, на его поверхности.однако все эти условия могут быть смоделированы на земле, за исключением одного - длительной невесомости.в условиях невесомости может быть создана на земле, но лишь на несколько секунд.полет в космос - это другой вопрос: спутник на орбите земли в динамичный невесомости государство, то есть, когда гравитация нивелировано iner - тиа.что может быть использован для невесомости?многие известные процесс ­ - эс - давай по - разному ввиду отсутствия вес.этот принцип архимеда, утратил силу и, соответственно, стабильное государство жидкая смесь - турес можно получить, компоненты которой будут сразу же отдельно на земле, из - за различных плотность.в случае тает "металлов, очки или полупроводники, они могут быть спадет на отверждение точки даже в космосе, а затем принес обратно на землю.такие материалы будут обладать довольно необычные свойства.в космосе нет гравитационная конвекция, например, перевозки газов или жидкости, в результате разница температур.известно, что различные дефекты в полупроводниках происходят из - за конвекции.биохимики также иметь дело с худших аспектов конвекция, например, в производстве superpure биологически активных веществ.конвекция очень сложно на земле.после запуска первого орбитальных станций, специалисты начали эксперименты, направленные на то, чтобы доказать преимущества нулевой гравитации государства для производства некоторых материалов.в этой стране все орбитальных станций "салют", начиная с 5 использовались для этой цели, а также ракет.с 1976 года - более 600 технологических экспериментов проводилась на борту пилотируемых и беспилотных космических кораблей.эксперименты показали, что многие из свойств материалов, полученных под нулевой гравитации состояние намного лучше, чем был на земле.кроме того, установлено, что необходимо разработать новую науку - физика невесомость государство, которое формирует теоретическое обоснование для космической отрасли и космических материалов исследования.эта наука в основном была разработана. методы математического моделирования с автоматами процесса под нулевой гравитации состояние были созданы с помощью компьютеров.специальные космические аппараты будут также необходимы для промышленного производства нового поколения материалов.исследования показали, что ускорением на борту этих транспортных средств должна быть сведена к минимуму.было установлено, что космические платформы в автономном полете снаряжением были наиболее подходящей для производства материалов.эти транспортные средства будут использовать свои собственные двигатели к своей базы орбитальной станции после определенного периода времени.космонавтов на борту станции может заменить образцы.многие новые и весьма интересные проекты планируются на орбитальных станциях.вот один из них.конвекции не позволяют расти большой кристаллов протеинов на земле.но можно выращивать такие кристаллы под нулевой гравитации состояние и изучить их структуры.данные, полученные в ходе экспериментов, может быть полезным для работы лабораторий на земле в использовании методов генной инженерии.таким образом, можно сделать новые материалы в космосе, а также получить ценные научные данные для новых высокоэффективных технологий на земле.подготовительная работа для промышленного производства в пространстве в более широком масштабе осуществляется в россии, сша, западной европе и японии.следует отметить, что, по данным американских экспертов, производство материалов в космосе состоит в том, чтобы собрать 60 миллиардов долларов в год.
переводится, пожалуйста, подождите..
 
Другие языки
Поддержка инструмент перевода: Клингонский (pIqaD), Определить язык, азербайджанский, албанский, амхарский, английский, арабский, армянский, африкаанс, баскский, белорусский, бенгальский, бирманский, болгарский, боснийский, валлийский, венгерский, вьетнамский, гавайский, галисийский, греческий, грузинский, гуджарати, датский, зулу, иврит, игбо, идиш, индонезийский, ирландский, исландский, испанский, итальянский, йоруба, казахский, каннада, каталанский, киргизский, китайский, китайский традиционный, корейский, корсиканский, креольский (Гаити), курманджи, кхмерский, кхоса, лаосский, латинский, латышский, литовский, люксембургский, македонский, малагасийский, малайский, малаялам, мальтийский, маори, маратхи, монгольский, немецкий, непальский, нидерландский, норвежский, ория, панджаби, персидский, польский, португальский, пушту, руанда, румынский, русский, самоанский, себуанский, сербский, сесото, сингальский, синдхи, словацкий, словенский, сомалийский, суахили, суданский, таджикский, тайский, тамильский, татарский, телугу, турецкий, туркменский, узбекский, уйгурский, украинский, урду, филиппинский, финский, французский, фризский, хауса, хинди, хмонг, хорватский, чева, чешский, шведский, шона, шотландский (гэльский), эсперанто, эстонский, яванский, японский, Язык перевода.

Copyright ©2024 I Love Translation. All reserved.

E-mail: